נגישות       נגישות
שינוי גודל טקסט:
א א א
שינוי צבעי האתר:
? מקשי קיצור:

לחיצה חוזרת ונשנית על המקש Tab תעביר אתכם בין הקישורים והאזורים השונים בעמוד.

הפעלת מקשי הקיצור תלויה בדפדפן שבו אתם משתמשים.

Internet Explorer, Chrome ובגרסאות ישנות של Firefox: לחצו על מקש Alt ועל מקש המספר או האות על-פי הרשימה. ב Firefox 3 ומעלה: לחצו על המקשים Alt + Shift + המספר או האות.

S - עבור לתוכן הדף
L - חיפוש
1- עמוד הבית
2 - פרוייקטים
3 - מדריכים
4 - אודות
5 - צרו קשר
6 - הצהרת נגישות
 

חוק בייס והבנת המציאות

מחבר:
בתאריך:

אתמול הלכתי ברחוב וראיתי כלב חמוד. כשחזרתי הביתה סיפרתי בהתלהבות רבה על הכלב, ונאמר לי שהכלב הוא כלב מגזע הסקי כי ידוע ש-95% מכלבי ההסקי הם חמודים. לאור מה שנאמר לי, עניין אותי לדעת מה הסיכוי שהכלב שפגשתי הוא אכן הסקי. אז בררתי באינטרנט וגיליתי ש-50% מהכלבים הם חמודים, וגם ש-5% מהכלבים שייכים לגזע ההסקי.

ניתן לתאר את הנתונים באופן הבא:

הצגה אינטואיטיבית של נוסחת בייס

ולהציג את ההסתברויות באמצעות הטבלה הבאה:

חישוב הסתברויות לצורך ההסבר האינטואיטיבי של נוסחת בייס

השורה האחרונה היא מכפלת ההסתברויות. נסביר את החישוב:

מה הסיכוי להסקי חמוד?

5% X 95% = 4.75%

ומה הסיכוי לכלב חמוד שאינו הסקי?

95% X 50% = 47.5%

 

היחס של 4.75 ל47.5 הוא 1:10, כלומר הסיכוי שהכלב החמוד שראיתי הוא הסקי הוא נמוך. אבל כמה נמוך? לשם כך עלינו לחשב את גודל מרחב ההסתברויות שכולל סיכוי של 1 לכלב הסקי חמוד וסיכוי של 10 לכלב חמוד שאינו הסקי, כך שמרחב ההסתברויות הוא 11 (1 + 10), והסיכוי להסקי מתוך מרחב ההסתברויות הוא 1:11.

אפשר לכתוב את זה כך:

1/(1+10) = 1/11

מזה אנחנו יכולים ללמוד שכשמתחשבים בנתונים המקדימים (שיעור ההסקי באוכלוסיית הכלבים) הסיכויים למסקנה שהכלב החמוד שפגשתי הוא אכן הסקי נמוכים. כי אם הייתי מתחשב רק בנתון ש-95% מכלבי ההסקי הם חמודים הייתי עלול הייתי לחשוב שרוב הסיכויים שפגשתי הסקי, אבל בהינתן השיעור הנמוך של גזע כלבים זה באוכלוסיה הסיכויים דווקא גדולים יותר שהכלב החמוד שפגשתי אינו כלב הסקי.

מזה אפשר ללמוד שבכל פעם ששוקלים את הנתונים הקיימים בניסיון להבין את העולם צריך לנסות למצוא ולהתחשב בנתונים מקדימים. דבר שאנחנו כבני אדם נוטים לשכוח כשאנחנו מגבשים את דעתנו על המציאות.

כאמור, המסקנה שפגשתי הסקי התבררה כלא סבירה בהתבסס על הידע המקדים בדבר שיעור ההסקי באוכלוסיה ושיעור הכלבים החמודים. אבל בהמשך התבררו לי עובדות שלא ידעתי ששינו את דעתי. לדוגמה, הכלב שפגשתי דומה לזאב וזה הגדיל את הסיכויים שמדובר בהסקי (אם כי לא היווה עדות מכרעת כיוון שישנם גזעים נוספים שדומים לזאבים). אח"כ נזכרתי שהכלב שפגשתי הוא אתלטי וזה הגביר עוד יותר את הסיכויים שאכן פגשתי בהסקי. ולבסוף, בביקורי בקוטב הצפוני ראיתי כלבים הסקים רתומים למזחלה שהם זהים בכל לכלב שפגשתי, וזה גרם לי לשנות את דעתי ולהסיק שהכלב שפגשתי הוא בסבירות של כמעט 100% כלב הסקי.

מהדוגמה הזו, אפשר להבין שאחרי גיבוש הדעה הראשונית, מנומקת ומחושבת ככל שתהיה, עדיין צריך לשמור על ראש פתוח לעדויות נוספות שיכולות לחזק את דעתנו או להחליש אותה. וכמו בדוגמה הזו, כך בחיים, צריך כל הזמן לחפש את המידע המקדים שיכול לשפוך אור חדש על המסקנות והאמונות שלנו.

החישובים שעשיתי הם חישובים אינטואיטיביים שמבוססים על חוק בייס (bayes theorem) אבל בגלל שאני לא כותב מאמר מדעי אלא מנסה ללמוד משהו על החיים, אני לא נכנס לנוסחאות פורמליות.

וכדי להעמיק את ההבנה, בואו נציג דוגמה נוספת:

 

זיהוי מטוסי אויב וכשלים בחשיבה

דמיין שאתה טייס בחיל האוויר הישראלי שמוזנק לטפל במטוס מיג שחדר לשמים האוויריים של ישראל מעל רמת הגולן. ידוע לך שלא רק חיל האוויר הסורי עלול לטוס באזור כי גם הרוסים טסים באזור, ואתם יש לנו יחסי ידידות. בנוסף, ידוע ששיעור מטוסי המיג הסורים באזור הוא 10%, ויתר המטוסים הם רוסים. וגם ששיעור הזיהוי הנכון על ידי טייסי חיל האוויר שלנו הוא 80%. מכיוון שטייס חיל האוויר זיהה את המטוס כמטוס סורי השאלה הרת הגורל היא מה מידת הביטחון שבה הוא יכול להחליט להפיל את המטוס?

התשובה האינטואיטיבית היא שאם מידת הזיהוי הנכון היא 80% אז זו גם צריכה להיות מידת הביטחון בהחלטה להפיל את המטוס. רק שאם נתחשב רק בתחושת הבטן נתעלם מהנתון הנוסף שהוא שיעור המטוסים הסוריים מכלל מטוסי המיג בזירה.

נכניס את כל הנתונים לתוך המטריצה הבאה שתסייע לנו לחשב את ההסתברויות תוך התחשבות בפרופורציה של המטוסים בזירה.

חישוב אינטואיטיבי גאומטרי של חוק בייס

נכפול את ההסתברויות:

זיהוי נכון
(80%)
זיהוי שגוי
(20%)
סורי
(10%)
סורי באמת
(80% * 10% = 8%)
סורי שמזוהה כרוסי
(10% * 20% = 2%)
רוסי
(90%)
רוסי באמת
(90% * 80% = 72%)
רוסי שזוהה כסורי
(90% * 20% = 18%)

ממכפלת ההסתברויות אנחנו למדים שהסיכוי שהמטוס שזוהה כסורי הוא אכן כזה הוא 8%, והסיכוי לזהות מטוס רוסי בטעות כסורי הוא 18%. לפיכך, הסיכוי לזיהוי נכון הוא 8 ל-18. או 8 מתוך 26 (8 + 18 =26). כלומר, הסיכוי שהמטוס שזוהה כסורי הוא באמת מטוס אויב שצריך להפיל אותו הוא פחות מ-31%.

הנטייה של רוב האנשים לבחור במידע שהכי פשוט להבין ולהתבסס עליו בהסקת המסקנות שלהם, מכונה שגיאה בשיעור הבסיס (base rate fallacy), והיא אחראית לרבים מכשלי החשיבה והמסקנות השגויות שאנשים נוטים ליפול לתוכם.

 

הסתכלות סטטיסטית ברוח חוק בייס על הפרשה שמסעירה את המדינה

הנושא של חטיפת ילדים בקום המדינה מעסיק ומזעזע את הציבור הישראלי עד ימינו. הרבה שנים סברתי שהמידע החסר היה שיעור תמותת התינוקות בקום המדינה, ושלעובדה שבימינו תמותת תינוקות היא אירוע נדיר יש השפעה על הבנתנו את הנושא. חיזוק לדעתי, מצאתי באינטרנט בנתון שלפיו שיעור תמותת התינוקות בשנה הראשונה לחייהם באירופה עד שנות ה-50 של המאה ה-20 היה 50%, ולכן חשבתי שניתן להסביר את העלמות חלק גדול מהילדים בפטירתם בנסיבות טבעיות. הגעתי למסקנה זו כי הקשבתי פחות לעדויות של ההורים שאיבדו את ילדיהם, וחיפשתי עובדות אובייקטיביות.

ברבות השנים, נתקלתי בעדויות שערערו את תפיסתי את הנושא. לדוגמה, אישה בשם ציונה מספרת שהיא הובאה "מתנה" להורים המאמצים שלה. זה גרם לי לחשוב שאולי מדובר במקרה בודד ויוצא דופן. כעבור מספר שנים נתקלתי באתר ynet בעדות מצולמת ומוקלטת, של מטפלת שטפלה בילדים ומספרת שילדים נעלמו מעריסותיהם לאחר ביקורים של נשים מחו"ל. זה גם מצטרף לכך שלרבים מהילדים אין קבר. והמסקנה שלי היום, בעקבות העדויות הנוספות, היא שמאוד יכול להיות שלפחות חלק מהילדים שנעלמו אכן נחטפו.

 

מקורות

Biases in Estimating Probabilities, Richards J. Heuer, Jr.

 

 

לכל המדריכים של כישורי חיים

הוסף תגובה חדשה

 

= 3 + 3